Summary: Inferences Involving One Population

Q: Are conditions met for me to use z or t-table? \rightarrow Am I dealing with p or μ ? \rightarrow Do I know σ ? \rightarrow Use z-table \downarrow NO \downarrow P Cannot Proceed Use z-table Use t-table

For Confidence Interval: hypothesized $np' \ge 5$ proportion $n(1-p') \ge 5$
z - table proportion
$n(1-p_0) \ge 5$ $p_0 = \text{hypothesized}$ $\sigma_0 = \sqrt{p_0(1-p_0)}$
For Hypothesis Testing: $z = \underline{p' - \underline{p}_0}$ $n \ p_0 \ge 5$ $z = \underline{p' - \underline{p}_0}$
n-1 sample is taken is normal mean
Freedom Population from which the hypothesized
Degrees or μ₀≕
t-table $n \ge 30$ $t = \overline{x} - \mu_0$
Population from which the sample is taken is normal
z - table
$n \ge 30$ $z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$
Justification of Use of f
Test Statistic

What to include in a Hypothesis Test:

- 2- Justify the use of the z or t table
- 3- Determine the rejection region (illustrate)
- 4- Calculate the test statistic
- 5- Determine whether or not to reject Ho

- 6- Write a brief conclusion interpreting your decision

 * Note that you might have to use classical approach or p-value approach depending on what the question asks

Summary: Inferences Involving TWO Populations

Q: Are conditions met for me to use z or t-table? \rightarrow Do I know $\sigma_1 \& \sigma_2$? \rightarrow Use z-table VO V ↓ NO Use t-table

Cannot Proceed

· · · · · · · · · · · · · · · · · · ·		
μ ₁ – μ ₂ (Difference of Actual Population Means)	μ ₁ – μ ₂ (Difference of Actual Population Means)	What you want to Infer About
n ₁ = sample size of first population n ₂ = sample size of second population \overline{x}_1 = sample mean of first population \overline{x}_2 = sample mean of second population population	n ₁ = sample size of first population n ₂ = sample size of second population x ₁ = sample mean of first population x ₂ = sample mean of second population population	Sample
S1 & S2 (Sample standard deviations)	σ ₁ & σ ₂ (Actual Population Standard Deviations)	Standard Deviation Given in Problem
t-table Degrees of Freedom $ \begin{pmatrix} s_1^2 + s_2^2 \\ \frac{s_1}{n_1} \frac{s_2^2}{n_2} \end{pmatrix} \\ \frac{s_1^4}{(n_1)^2(n_1-1)} \frac{s_2^4}{(n_2)^2(n_2-1)} $	z - table	Table Used
For BOTH populations n≥30 or Population from which the sample is taken is normal	For BOTH populations n≥30 or Population from which the sample is taken is normal	Justification of Use of Table
$t = \frac{x_1 - x_2}{\sum_{1}^{s_1} + \frac{s_2}{2}}$ $\sqrt{\frac{n_1}{n_1}} \frac{n_2}{n_2}$	$Z = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{G_1^2 + G_2^2}{n_1}}}$	Test Statistic for Hypothesis Test
$(\overline{x}_1 - \overline{x}_2) - E < \mu < (\overline{x}_1 - \overline{x}_2) + E$ $E = \int_{\alpha/2} \sqrt{\frac{s_1^2 + s_2^2}{n_1 - n_2}}$ $1 - \alpha = \text{confidence level}$ $t_{\alpha/2} \text{ is the t value that}$ bounds a TAIL area of $\alpha/2$	$(\overline{x_1} - \overline{x_2}) - E < \underline{\mu} < (\overline{x_1} - \overline{x_2}) + E$ $E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1}} + \frac{\sigma_2^2}{n_2}$ $1 - \alpha = \text{confidence level}$ $z_{\alpha/2}$ is the z value that bounds a TAIL area of $\alpha/2$	Confidence Interval

What to include in a Hypothesis Test:

- 1- State Ho and Ha
- 2- Justify the use of the z or t table
- 3- Determine the rejection region (illustrate)
- 4- Calculate the test statistic
- 5- Determine whether or not to reject H_{o}
- 6- Write a brief conclusion interpreting your decision
- * Note that you might have to use classical approach or p-value approach depending on what the question asks