Dawson College: Linear Algebra: 201-105-DW-S05: Fall 2009
Name: Student ID:
Quiz 7
This quiz is graded out of 10 marks. No books, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.
Question 1. Let $\mathbf{u} = (3, 2, -1)$, $\mathbf{v} = (3, -3, -3)$, $\mathbf{w} = (2, -2, -3)$.
a. (3 marks) Find the scalar triple product of \mathbf{u} , \mathbf{v} , \mathbf{w} .

b. (1 mark) Find the volume of the parallelepiped with sides **u**, **v**, **w**.

Question 2. (4 marks) Find the area of the parallelogram determined by $\mathbf{x} = (2, -3, 3)$ and $\mathbf{y} = (-2, 2, -3)$.

Question 3. (2 marks) Find a vector **v** that is orthogonal to the vector $\mathbf{u} = (1, -6, -2)$.