Dawson College: Linear Algrbra: 201-105-DW-S04: Fall 200	Dawson (College:	Linear	Algrbra:	201-1	05-DW-	S04:	Fall	200
--	----------	----------	--------	----------	-------	--------	------	------	-----

Name:	
Student ID:	

Test 1

This test is graded out of 49 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (10 marks) Solve the following system by Gauss-Jordan elimination:

$$3x_1 - x_2 + x_3 - 3x_4 + x_5 = 3$$

 $4x_1 + 3x_2 - x_3 + x_4 + x_5 = 5$
 $11x_1 + 5x_2 - x_3 + 3x_5 = 2$

Question 2. Consider the matrices:

$$A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & 3 & -6 \\ 1 & 0 & -2 \end{bmatrix}, B = \begin{bmatrix} 3 & 2 & -1 \\ 0 & -4 & 1 \end{bmatrix} C = \begin{bmatrix} 2 & -1 \\ -3 & 4 \\ 0 & -1 \end{bmatrix} D = \begin{bmatrix} 1 & 0 \\ -2 & -2 \end{bmatrix}$$

a. (2 marks) Compute the following, if possible.

$$C-D$$

b. (3 marks) Compute the following, if possible.

$$BC-D$$

c. (3 marks) Compute the following, if possible.

$$C^t B^t$$

d. (3 marks) Compute the following, if possible.

e. (5 marks) Find E, if possible.

$$(D^t + I - E^t)^{-1} = D$$

Question 3. (5 marks) Given the following augmented matrix in row-echelon form, solve the system using back substitution.

$$\begin{bmatrix} 1 & 2 & 2 & \frac{5}{2} & \frac{1}{2} \\ 0 & 1 & -1 & 3 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Question 4. (3 marks) Given the following augmented matrix solve the system.

$$\begin{bmatrix} 1 & 2 & 2 & 0 & 1 \\ 0 & 1 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Question 5. (5 marks) Find the inverse of

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & 4 \\ -3 & -6 & 10 \end{bmatrix}$$

Question 6. (5 marks) Write the matrix

$$\begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$$

as a product of elementary matrices.

Question 7. (5 marks) Solve the following system by inverting the coefficient matrix.

$$\begin{array}{rcl}
-2x_1 & = & 1 \\
x_1 & - & x_2 & = & 2
\end{array}$$

Bonus Question. (3 marks) Consider the following system:

where $a, b \in \mathbb{R}$, determine the values of a, b so that the system has

- i a unique solution,
- ii infitely many solutions,
- iii no solutions.