[7] **1.** Find det
$$\begin{pmatrix} 1 & 3 & 1 & 5 \\ 1 & 3 & -3 & -3 \\ 0 & 3 & 1 & 0 \\ 1 & 6 & 2 & 11 \end{pmatrix}$$
 any way you like.

- 2. Find the inverse of $\begin{pmatrix} 2 & 3 & -5 \\ 3 & -1 & 2 \\ 5 & 4 & -6 \end{pmatrix}$ using the adjoint formula. 3. Use Cramer's Rule to solve **only for** y in the system $\begin{cases} 2x + 3y + z = 1 \\ x + y z = -1 \\ -2x & +2z = 1 \end{cases}$. [6]
- [6]**4.** Suppose A and B are 4×4 matrices, with $\det(A) = 3$. Find $\det(B)$ given that $\det(2A^TB^{-1}) = \det(\operatorname{adj}(A)B)$
- [6]**5.** Let A be an $n \times n$ matrix.
 - a) If $A^T = -A$ and n is odd, show that A is not invertible.
 - b) If $A^T = -A$ and n is even, what can you say about the invertibility of A?
 - c) If $A^2 + I = 0$, show that n is even.
- **6.** Let $V = \mathbb{R}^2$, with the usual scalar multiplication, but define addition by [4] $(x_1, x_2) + (y_1, y_2) = (x_2 + y_2, x_1 + y_1)$. Show that V under these operations is not a vector space. Clearly state which axiom fails.
- 7. For an $m \times n$ matrix A, let $\ker(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}$. Show that [8]
 - a) $\ker(A)$ is a subspace of \mathbb{R}^n .
 - b) $\ker(A) = \{0\}$ if and only if the columns of A are linearly independent.
 - c) if m < n, then $\ker(A) \neq \{0\}$.
 - d) if A = BC, where B is $m \times m$ and C is $m \times n$, and if B is invertible, then $\ker(A) = \ker(C)$.
- [4] For which value(s) of t will the set $\{(1,1,0),(1,3,-1),(5,3,t)\}$ be linearly independent?
- **9.** Let $\alpha = \{(1,1,1), (1,0,-1), (1,0,1)\}$ and $\beta = \{(1,2,1), (2,3,4), (3,4,3)\}$ be two bases for \mathbb{R}^3 . If $(\mathbf{x})_{\alpha} = (5,-1,-1)$, what is $(\mathbf{x})_{\beta}$? |4|
- **10.** Find a basis for, and the dimension of, the kernel of $\begin{pmatrix} 1 & 0 & 2 & 0 & 4 \\ 0 & 1 & 3 & 0 & 5 \\ 0 & 0 & 0 & 1 & 6 \end{pmatrix}$. [4] $[Total\ Points = 56]$
- [3] Find a basis for, and the dimension of, the space of matrices that commute with $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$ (i.e. the space of all matrices X such that AX = XA)
- Prove the commutativity axiom, assuming the other 9 vector space axioms. |4|