Dawson College:	Linear	Algebra	(SCIENCE):	201-NYC	-05-S2: Fall 201	8
Dawson Concec.	Lincar	zigebi a	(BCILICE).	201 111 C	05 52. I all 201	. 0

A.T			
AT.			
	Name		

Quiz 5

This quiz is graded out of 15 marks. No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (3 marks) Prove that if A is an invertible matrix and B is row equivalent to A, then B is also invertible.

Question 2. (5 marks) Let Ax = 0 be a homogeneous system of n linear equations in n unknowns, and let Q be an invertible $n \times n$ matrix. Prove that Ax = 0 has only the trivial solution if and only if (QA)x = 0 has only the trivial solution.

Question 3. (3 marks) We showed in class that the product of symmetric matrices is symmetric if and only if the matrices commute. Is the product of commuting skew-symmetric and symmetric matrices skew-symmetric? Explain.

Question 4. Determine whether the following statements are true or false for any $n \times n$ matrix A. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

- a. (2 marks) If A^2 is a symmetric matrix, then A is a symmetric matrix.
- b. (2 marks) Elementary matrices are not row equivalent to the identity.