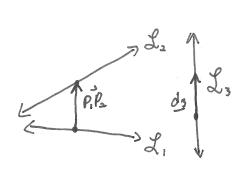
No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (5 marks) Given the following lines which are all skew to each other:

here $t_1, t_2, t_3 \in \mathbb{R}$. Consider a line \mathcal{L}_4 that is parallel to \mathcal{L}_3 and intersects both \mathcal{L}_1 and \mathcal{L}_2 . Find the points of intersection of \mathcal{L}_4 with \mathcal{L}_1 and \mathcal{L}_4 with \mathcal{L}_2 .



So
$$P_1P_2 = Kd_3$$

where $P_1P_2 = (1+t_2, 1, t_2) - (1+t_1)$
 $= (t_2-t_1, 1-2t_1, t_2)$

$$(t_2-t_1, 1-at_1, t_2)=K(1,2,3)$$
we obtain
 $(t_2-t_1=K_1, t_2)=K(1,2,3)$

$$\begin{cases} t_{2}-t_{1} = K \\ 1-2t_{1} = 2K \\ t_{2} = 3 K \end{cases}$$

$$\begin{cases} t_{1}-t_{2}+K = 0 \\ 2t_{1} + 2K = 1 \\ -t_{2}+3K = 0 \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 2 & 0 & 2 & 1 \\ 0 & -1 & 3 & 0 \end{bmatrix}$$

$$-aR_1 + R_2 \rightarrow R_2 \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & -1 & 3 & 0 \end{bmatrix}$$

$$\frac{1}{2}R_{2}+R_{1}\rightarrow R_{1} \begin{bmatrix} 1 & 0 & 1 & 1/2 \\ 0 & 2 & 0 & 1 \\ 0 & 2 & 0 & 1 \end{bmatrix}$$

$$\frac{1}{2}R_{2}+R_{3}\rightarrow R_{3} \begin{bmatrix} 0 & 0 & 0 & 1/3 \\ 0 & 0 & 3 & 1/2 \end{bmatrix}$$

$$-\frac{1}{3}R_{3}+R_{1}\rightarrow R_{1} \begin{bmatrix} 1 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \end{bmatrix}$$

$$-\frac{1}{3}R_{3}\rightarrow R_{3} \begin{bmatrix} 0 & 0 & 1 & 1/6 \\ 0 & 0 & 1 & 1/6 \end{bmatrix}$$

J.: $(x,y,z) = (1,0,0) + \frac{1}{2}(1,2,0)$ = $(\frac{4}{3},\frac{2}{3},0)$

$$\mathcal{L}_{2}:(x,y,z)=(1,1,0)+\frac{1}{2}(1,0,1)$$

$$=(\frac{3}{2},1,\frac{1}{2}).$$

Question 2. (5 marks) Given the cone defined by the given vectors $\vec{u} = (2, 2, 4)$, $\vec{v} = (1, 2, 1)$ and $\vec{w} = (4, 1, 3)$. Find the volume of the cone. Note from the diagram that \vec{w} is not perpendicular to the base, that \vec{v} is positioned such that its tail is at the center of the circle and its tip lies on the circle, that \vec{u} is positioned such that the vector passes through the center of the circle while its tail and tip lie on the circle. (Hint: the volume of a cone is equal to one third of the area of the base times the height.)

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \cdot \left(\frac{$$

as $d = \frac{||\vec{AP} \times \vec{AB}||}{||\vec{AP} \times \vec{AB}||}$

as
$$d = \frac{\|AP \times AB\|}{\|AB\|}$$

Sing = $\frac{\partial P}{\partial AB}$

Sing = $\frac{\partial P}{$

Question 4. (2 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^3 , where \vec{u} is nonzero and $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, then $\vec{v} = \vec{w}$.

False,
Let
$$u = (1,0,0)$$

 $V = (2,0,0)$
 $W = (3,0,0)$
Then $u \times V = u \times (2u) = 2(u \times u) = 20 = 0$
 $u \times u = u \times (3u) = 3(u \times u) = 30 = 0$
So $u \times V = u \times u$ but $V \neq u$