Dawson College: Fall 2019	: Linear Algebra (SCIENCE)): 201-NYC-05-S5: Quiz 12	name:	

Question 1. Let $V = \{ \mathbf{x} \mid \mathbf{x} \in \mathbb{R} \text{ and } \mathbf{x} > 3 \}$. For $\mathbf{u}, \mathbf{v} \in V$ and $a \in \mathbb{R}$ vector addition is defined as $\mathbf{u} \boxplus \mathbf{v} = \mathbf{u}\mathbf{v} - 3(\mathbf{u} + \mathbf{v}) + 12$ and scalar multiplication is defined as $a \boxdot \mathbf{u} = (\mathbf{u} - 3)^a + 3$. It can be shown that (V, \boxplus, \boxdot) is a vector space over the scalar field \mathbb{R} . Find the following:

- a. $(1 \text{ mark}) 4 \boxplus 5$
- b. $(1 \ mark) 2 \boxdot 4$
- c. (2 marks) **0**
- d. (2 marks) the additive inverse of \mathbf{x}

Question 2.(3 marks) Determine whether the following is a vector space: $V = \{A | A \in \mathcal{M}_{101 \times 101} \text{ and } A \text{ is invertible}\}$ with the following operations:

$$A + B = AB$$
 and $kA = kA$

That is, vector addition is matrix multiplication and scalar multiplication is the regular scalar multiplication. Justify.

Question 3. (4 marks) In any vector space V, for any $\vec{v}, \vec{w} \in V$ and $a \in \mathbb{R}$ prove that if $a\vec{v} = a\vec{w}$ and $a \neq 0$ then $\vec{v} = \vec{w}$. Show every step, justify every step, and cite the axiom(s) used!!!

Question 4. (2 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. A vector space must contain at least two vectors.