No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for

Question 1. Let $V = \{ \mathbf{x} \mid \mathbf{x} \in \mathbb{R} \text{ and } \mathbf{x} > 3 \}$. For $\mathbf{u}, \mathbf{v} \in V$ and $a \in \mathbb{R}$ vector addition is defined as $\mathbf{u} \boxplus \mathbf{v} = \mathbf{u}\mathbf{v} - 3(\mathbf{u} + \mathbf{v}) + 12$ and scalar multiplication is defined as $a \boxdot \mathbf{u} = (\mathbf{u} - 3)^a + 3$. be shown that (V, \boxplus, \boxdot) is a vector space over the scalar field \mathbb{R} . Find the following:

a.
$$(1 \text{ mark}) 4 \boxplus 5 = 4(5) - 3(4+5) + |2 = 20 - 27 + |2 = 5$$

b.
$$(1 \text{ mark}) - 2 \odot 4 = (4-3)^{-2} + 3 = 4$$

$$u\alpha - 3u - 3u + 12 = u$$

$$\alpha(u-3) = 4u - 12$$

$$\alpha = \frac{4u - 12}{u - 3}$$

$$0 = \alpha = 4 \in V$$

d. (2 marks) the additive inverse of \mathbf{x}

d. (2 marks) the additive inverse of x

Since
$$(V, \mathbf{B}, \mathbf{D})$$
 is a vector space we know the additive inverse of \mathbf{X}

is $-\mathbf{X}$ by thm l.l.l (note we could have used thm l.l.l for part c) $-\mathbf{X} = (\mathbf{X} - \mathbf{3})^{-1} + \mathbf{3}$

$$= \frac{1}{\mathbf{X} - \mathbf{3}} + \mathbf{3}$$

Question 2.(3 marks) Determine whether the following is a vector space: $V = \{A | A \in \mathcal{M}_{101 \times 101} \text{ and } A \text{ is invertible}\}$ with the following operations:

$$A + B = AB$$
 and $kA = kA$

That is, vector addition is matrix multiplication and scalar multiplication is the regular scalar multiplication. Justify.

Question 3.(4 marks) In any vector space V, for any $\vec{v}, \vec{w} \in V$ and $a \in \mathbb{R}$ prove that if $a\vec{v} = a\vec{w}$ and $a \neq 0$ then $\vec{v} = \vec{w}$. Justify every step and cite the axiom(s) used!!!

$$\frac{\partial V}{\partial a} = \frac{\partial V}{\partial a} =$$

V = 100 V = W by axiom 10.

Question 4. (2 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. A vector space must contain at least two vectors.

False

$$V = \{Q\}$$
 with the operation $Q + Q = Q$ and $KQ = Q$ is a vector space.