=- |+ |- | |

No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement. Show all your work!

a. There is a basis for M_{22} consisting of invertible matrices.

Let $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $M_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $M_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $M_4 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, they are all invertible since they are elementary matrices. Consider $C_1M_1 + C_2M_2 + C_3M_3 + C_4M_4 = 0$, we obtain $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ and since $|A| = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} =$

o only trivial solution by equivalence than

=-1 #0

S 15

S= {M1, M2, M3, M43 is Li.

b. If A has size $n \times n$ and $I_n, A, A^2, \ldots, A^{n^2}$ are distinct matrices, then $\{I_n, A, A^2, \ldots, A^{n^2}\}$ is a linearly dependent set.

by a corollary seen in class the set S must be lin. dep.

c. There are only three distinct two-dimensional subspaces of P_2 .

Foilse,

The space with basis $\{1, \times 3\}$ 11 11 11 $\{1, \times^2 3\}$ 11 11 11 $\{1, \times^2 3\}$ 11 11 11 $\{1+X, \times^2 3\}$

All are lin. ind. set since in each set no vector is a mott. of the other. Clearly they are distinct, the space they generate are different.

d. Every linearly independent subset of a vector space V is a basis for V.

Forlise, Let $V = \mathbb{R}^2$, $5 = \{(1,0)\}$ is line ind. but is not a basis for V since it only spans the rectors along the x-axis.