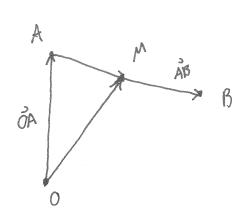
No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given

Question 1.(4 marks) Given two points A and B in \mathbb{R}^n . Find the formula for the midpoint of the line segment connecting the points A and B using vectors. That is, show that the midpoint is $\frac{1}{2}(A+B)$.



$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM}$$

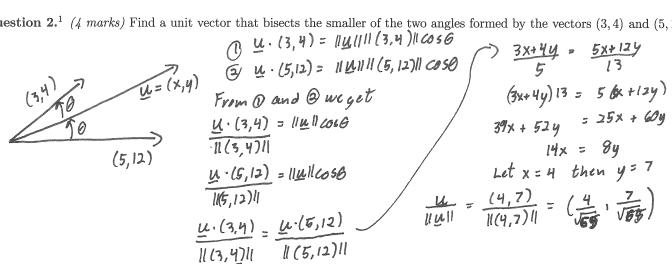
$$= \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AB}$$

$$= \overrightarrow{OA} + \frac{1}{2} (\overrightarrow{OB} - \overrightarrow{OA})$$

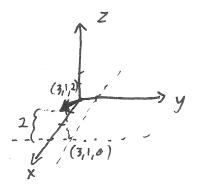
$$= \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OB})$$

$$\stackrel{\circ}{\circ} M = \frac{1}{2} (A + B)$$

Question 2.1 (4 marks) Find a unit vector that bisects the smaller of the two angles formed by the vectors (3,4) and (5,12).



Question 3. (2 marks) Sketch the vector \vec{AB} where A(1,2,3) and B(4,3,5) positioned with its initial point at the origin. In the sketch include the axes and their labels as shown in class.



$$\vec{AB} = \vec{OB} - \vec{OA} = (4,3,5) - (1,2,3) = (3,1,2)$$

Question 4. (3 marks) Prove: If \vec{u} and \vec{v} are vectors in \mathbb{R}^n then $\vec{u} \cdot \vec{v} = \frac{1}{4}||\vec{u} + \vec{v}||^2 - \frac{1}{4}||\vec{u} - \vec{v}||^2$.

$$\begin{aligned} & \{ (u, x) - \frac{1}{4} (u, x) = u, x \\ & = \frac{1}{4} (u + x) \cdot (u + x) - \frac{1}{4} (u - x) \cdot (u - x) \\ & = \frac{1}{4} (u + x) \cdot (u + x) - \frac{1}{4} (u - x) \cdot (u - x) \\ & = \frac{1}{4} (u + x) \cdot (u + x) - \frac{1}{4} (u - x) \cdot (u - x) \end{aligned}$$

¹Inspired from a WebWork problem

Question 5. Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. (2 marks) In \mathbb{R}^2 , the vectors of norm 5 whose initial points are at the origin have terminal points lying on a circle of radius 5 centered at the origin.

True,
$$||\vec{op}|| = 5$$

$$||(x,y)|| = 5$$

$$\sqrt{x^2 + y^2} = 5$$

$$x^2 + y^2 = 5^2$$

b. (2 marks) If $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$, then $\vec{v} = \vec{w}$

False, if
$$u=(0,0)$$
 and $v=(1,1)$ and $w=(1,2)$ we have $u\cdot v=0=u\cdot w$ but $v\neq w$

Bonus. (3 marks) Prove that the quadrilateral PQRS, whose vertices are the midpoints of the sides of an arbitrary quadrilateral ABCD, is a parallelogram.

