No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1.1 (1 mark each) Given

$$\mathcal{P}_1: 2x + y - 3z = 6,$$

$$\mathcal{P}_2: -6x - 3y + 9z = 1,$$

$$P_3: x + y + z = 1$$
, and

$$\mathcal{L}_1: \vec{x} = (1,0,1) + t(-4,-2,6)$$
 where $t \in \mathbb{R}$.

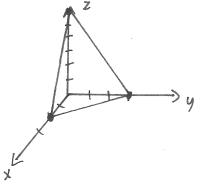
Complete the following sentences with the word perpendicular, parallel or, neither perpendicular nor parallel, as appropriate.

- a. \mathcal{P}_1 and \mathcal{P}_2 are ______ to each other.
- **b**. \mathcal{P}_1 and \mathcal{P}_3 are _____ to each other.
- **B.** \mathcal{P}_1 and \mathcal{L}_1 are _____ to each other.
- A. P_3 and L_1 are ______ to each other.

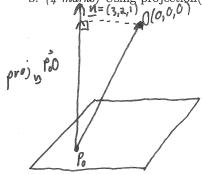
Question 2. Given the plane P: 3x + 2y + z = 6.

a. (2 marks) Find the x, y and z intercept of \mathcal{P} and sketch \mathcal{P} , include the axes and their labels as shown in class.

$$\frac{x-int}{y-int}$$
: Let $y=z=0=7$ $x=2$ (2,0,0)
 $\frac{y-int}{z-int}$: Let $x=z=0=7$ $y=3$ (0,3,0)
 $z-int$: Let $x=y=0=7$ $z=6$ (0,0,6)



b. (4 marks) Using projection(s) find the distance between the origin and \mathcal{P} .



Let
$$y=z=0=7$$
 $x=2$.. $P_{0}(2,0,0)$
 $P_{0}(z)=Q-0P_{0}(z)=(0,0,0)-(2,0,0)=(-2,0,0)$
 $P_{0}(z)=Q-0P_{0}(z)=(0,0,0)=(-2,0,0)$
 $P_{0}(z)=Q-0P_{0}(z)=(0,0,0)=(-2,0,0)=(-2,0,0)$
 $P_{0}(z)=Q-0P_{0}(z)=(0,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)$
 $P_{0}(z)=Q-0P_{0}(z)=(0,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)=(-2,0,0)$

c. (3 marks) Find the angle between \mathcal{P} and the xz-plane (the plane that contains the x and z axis).

$$77$$
 plant $n_{x_{2}} = (0, 1, 0)$ $n_{x_{2}} = (0, 1, 0)$

$$n_{p} \cdot n_{xz} = \|n_{p}\| \|n_{z}\| \cos \theta$$

$$2 = \sqrt{14} \cos \theta$$

$$\frac{2}{\sqrt{14}} = \cos \theta$$

$$8 = 0 = \operatorname{arccos}\left(\frac{2}{\sqrt{14}}\right)$$

XZ-plane has normal vector $N_{XZ} = (0,1,0)$ since Z

 $^{^{\}rm 1}$ Inspired from John Abbott Final Examinations.

Question 3. (4 marks) Find the closest point on x - y = 0 to the point P(2,3).

Question 4. Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. (2 marks) If \vec{a} and \vec{b} are orthogonal vectors, then for every nonzero vector \vec{u} , we have $\text{proj}_{\vec{b}}(\vec{u}) = \vec{0}$

True,
$$proj_{\underline{a}}(proj_{\underline{b}}\underline{u}) = proj_{\underline{a}}(\frac{\underline{b} \cdot \underline{b}}{\underline{b} \cdot \underline{b}}\underline{b}) = \underline{\alpha} \cdot (\frac{\underline{b} \cdot \underline{u}}{\underline{b} \cdot \underline{b}}\underline{a} \cdot \underline{a} = \frac{\underline{b} \cdot \underline{u}}{\underline{b} \cdot \underline{b}} \cdot \underline{a} \cdot \underline{a} = \frac{\underline{b} \cdot \underline{u}}{\underline{a} \cdot \underline{a}} = \underline{a} \cdot \underline{b} = 0$$

$$= \underline{0}$$

b. (2 marks) If the relationship $\operatorname{proj}_{\vec{a}}(\vec{u}) = \operatorname{proj}_{\vec{a}}(\vec{v})$ holds for some nonzero vector \vec{a} , then $\vec{u} = \vec{v}$.

False,
Let
$$u = (1,1)$$
 and $v = (1,2)$ and $a = (1,0)$

$$proj_{\underline{a}} u = proj_{\underline{a}} v = (1,0)$$
but $u \neq v$