LAST NAME:	SOLUTIONS
FIRST NAME:	
STUDENT NUMBER:	

MIDTERM

McGill University
Faculty of Science
Math 133 - Vectors, Matrices and Geometry

Instructor: E. Richer Date: May 22nd 2008

INSTRUCTIONS:

You have 1.5 hours to complete this midterm.

The midterm comprises 6 pages including this cover page.

The midterm has five questions.

the midterm is marked out of a TOTAL of 50 MARKS.

No books are permitted.

SHOW AND JUSTIFY ALL YOUR WORK.

Question	Mark
1	
2	
3	
4	
5	
Total	

Question 1. (10 marks)

Determine all values of a and b for which the following system:

$$2x-y+z=3$$
$$x+2y-az=22$$
$$4x+3y-z=b$$

has

- (i) a unique solution
- (ii) infinitely many solutions
- (iii) no solutions

$$\begin{bmatrix} 2 & -1 & 1 & 3 \\ 1 & 2 & -\alpha & 22 \\ 4 & 3 & -1 & b \end{bmatrix} \xrightarrow{ZR2 \to R_2} \begin{bmatrix} 2 & -1 & 1 & 3 \\ 2 & 4 & -2\alpha & 44 \\ 4 & 3 & -1 & b \end{bmatrix}$$

$$R_{3}-R_{2} \rightarrow R_{3} \qquad \begin{bmatrix} 2 & -1 & 1 & 3 \\ 0 & 5 & -2a-1 & 41 \\ 0 & 0 & 2a-2 & b-47 \end{bmatrix}$$

$$2a-2 \neq 0$$

$$\boxed{a \neq 1}$$

$$2a-2 \neq 0$$

$$\boxed{a \neq 1}$$
(ii) infinitely many solutions (row of zeros)
$$2a-2=0 \quad \boxed{a=1}$$

$$\boxed{b-47=0} \quad \boxed{b=47}$$

$$2a-z=0$$
 $a=1$
8 $b-47\neq 0$ $b\neq 47$

Question 2. (10 marks)

(a) Consider a set U in \mathbb{R}^n . State the three conditions that must be satisfied in order for U to be a subspace of \mathbb{R}^n .

(b) Is
$$U_1 = \left\{ \begin{bmatrix} s \\ t \\ 1 \end{bmatrix} \middle| s, t \text{ in } \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^3 ? Justify your answer.

(c) Is
$$U_2 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x, y, z \text{ in } \mathbb{R} \text{ and } 2x - y + z = 0 \right\}$$
 a subspace of \mathbb{R}^3 ? Justify your answer.

(c)
$$0 \vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 is in U_2 because $2(0) - 0 + 0 = 0$

2 Let
$$V_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 & $V_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ be in U_2

then
$$2x_1 - y_1 + z_1 = 0$$
 & $2x_2 - y_2 + z_2 = 0$

Now
$$V_1+V_2 = \begin{bmatrix} \chi_1 + \chi_2 \\ y_1 + y_2 \end{bmatrix}$$
 Check if V_1+V_2 is in U_2

$$= (2\chi_1 + \chi_2) - (y_1 + y_2) + Z_1 + Z_2$$

$$= (2\chi_1 - y_1 + Z_1) + (2\chi_2 - y_2 + Z_2)$$

$$= 0 + 0 = 0$$

So VI+VZ is in Uz.

B Let K be a scalar then
$$KV_1 = \begin{bmatrix} KX_1 \\ KY_1 \\ KX_2 \end{bmatrix}$$
 check if KV_1 is in U_2 $2(KX_1) - KY_1 + KZ_1 = K(2X_1 - Y_1 + Z_1) = K(0) = 0$ so KV_1 is in U_2 . U_2 is a subspace.

Question 3. (10 marks)

$$Let A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 3 & 4 \\ -1 & 4 & 3 & 7 \\ 0 & 2 & 2 & 4 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Given that R is the reduced echelon form of the matrix A, answer the following:

- (a) Find the dimension of the row space of A and determine a basis for it.
- (b) Find the dimension of the column space of A and determine a basis for it.
- (c) Find the dimension of the null space of A and determine a basis for it.

(a)
$$\dim ROWA = \# OF NON-ZERO ROWS = 2$$

$$BASIS = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$

(b) dim colA = # of Leading 1's = 2

Basis =
$$\begin{cases} \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}$$
 / $\begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}$

Let
$$\chi_3 = 9$$
 $\chi_2 = -\chi_3 - 2\chi_4$
 $\chi_4 = t$ $= -s - 2t$
 $\chi_1 = -\chi_3 - \chi_4$
 $= -s - t$

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} -s - t \\ -s - 2t \\ s \\ t \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} S + \begin{bmatrix} -1 \\ -2 \\ 0 \\ 1 \end{bmatrix} t$$

$$BASIS = \left\{ \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 6 \\ 1 \end{bmatrix} \right\}$$

Question 4. (10 marks)

Suppose $\{v_1, v_2, v_3\}$ are linearly independent vectors.

- (a) Is the set $\{v_1, v_2, v_1 v_2\}$ linearly independent? Justify your answer.
- (b) If $w_1 = v_1 + v_2$, $w_2 = v_2 + v_3$, $w_3 = v_3 + v_1$, show that $\{w_1, w_2, w_3\}$ is linearly independent.
- (a) NO. CLEARLY the third vector is A (inear combination (non-trivial) OF THE FIRST TWO.
- (b) Let $aw_1 + bw_2 + cw_3 = 0$ then $a(v_1+v_2) + b(v_2+v_3) + c(v_3+v_1) = 0$ $\Rightarrow (a+c)v_1 + (a+b)v_2 + (b+c)v_3 = 0$

Since VI, V2, V3 are linearly ind, then coefficients must be zero

$$\begin{array}{c} a+c=0 \\ a+b=0 \end{array} \Longrightarrow \begin{array}{c} c-b=0 \\ c=b \\ b+c=0 \end{array} \Longrightarrow \begin{array}{c} c+c=0 \\ c=0 \end{array}$$

only the trivial solution a=b=c=0satisfies $aw_1 + bw_2 + cw_3 = 0$ So $\{w_1, w_2, w_3\}$ is linearly ind. Question 5. (10 marks)

(a) Compute det A where
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 1 & 3 \\ -2 & -2 & 3 \end{bmatrix}$$

Is A invertible? Justify your answer.

(b) B and C are 3 x 3 matrices with det B = -2 and det C = 4. Compute $\det(4B^3C^tB^{-1})$.

Since det A ≠ 0 then A is inventible

(b)
$$\det(4B^{3}C^{\dagger}B^{-1})$$

= $4^{3}(\det B)^{3}(\det C)\frac{1}{\det B}$
= $4^{3}(-2)^{3}(4)\frac{1}{-2}$
= 4^{5}