Dawson Co	ollege: Ca	alculus II:	201-NYB-	05-C1:	Winter 2008
------------------	------------	-------------	----------	--------	-------------

Name:	
Student ID:	

Test 3

This test is graded out of 50 marks. No books, notes, no graphing calculator or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) Determine the indeterminate form, then evaluate the limit, using L'Hôpital Rule if necessary:

$$\lim_{x \to \infty} \frac{\ln x^3}{x^2}$$

Question 2. (5 marks) Determine the indeterminate form, then evaluate the limit, using L'Hôpital Rule if necessary:

$$\lim_{x\to\infty}x^2e^{-3x}$$

Question 3. (5 marks) Integrate the following improper integral if it converges:

$$\int_0^\infty x e^{-x/3}$$

Question 4. (5 marks) Integrate the following improper integral if it converges:

$$\int_0^2 \frac{1}{\sqrt[4]{2-x}} \, dx$$

Question 5. (5 marks) Find the volume of the solid generated by revolving the region bounded by the graphs of the equations: $y = \sqrt{x}$, y = 0, x = 9 about the x-axis.

Question 7. (5 marks) Find the arc length of the graph of the function $y = \frac{x^4}{10} + \frac{1}{6x^2}$ over the interval [1,2].

Question 8. (5 marks) An open tank has the shape of a circular cone with its tip oriented downward. The tank is 8 feet across the top and 12 feet high. How much work is done in filling the tank by pumping the water from 7 feet below the tank? (The water weighs 62.4 pounds per cubic feet)

Question 9. (5 marks) Integrate the following indefinite integral:

$$\int \frac{3x^2 - 2}{x^3 + x} \, dx$$

Question 10. (5 marks) Integrate the following indefinite integral:

$$\int x\sqrt{1+x^2}\,dx$$

Bonus Question. (3 marks) Evaluate the following limit:

$$\lim_{x\to 1^+} (\ln x)^{x-1}$$