Dawson College: Calculu	ıs II:	201-	NYB-0	5-S02:	Winter	2010
--------------------------------	--------	------	-------	--------	--------	------

Name:	
Student ID:	

Test 1

This test is graded out of 45 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Formulae:

$$\sum_{i=1}^{n} c = cn \text{ where } c \text{ is a constant } \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$
Question 1. (5 marks) Evaluate using the definition of the definite integral

$$\int_{1}^{2} 3x^2 - 2x + 1 \ dx.$$

Question 2. (5 marks) Evaluate the definite integral:

$$\int_{1}^{2} \sqrt{x}(x-1)(x-1) - \frac{1}{x} \, dx$$

Question 3. (5 marks) Evaluate the indefinite integral:

$$\int \frac{y^2}{\sqrt{y-1}} \, dy$$

Question 4. (5 marks) Find the average value of the function

$$f(x) = \frac{x^2}{x^2 + 3}$$

on the interval $[0, \sqrt{3}]$

Question 5. (5 marks + 1 bonus mark to simplify completely) Evaluate the expression:

$$\frac{d}{dx} \left[\int_{-\cos x}^{\cos x} t^2 \arctan t \ dt \right]$$

Question 6. (5 marks) Suppose f(x) is continuous over the real numbers and

$$\int_0^1 f(x) \, dx = 121.$$

Evaluate

$$\int_{-\pi}^{0} \sin\left(\frac{x}{2}\right) f\left(\cos\left(\frac{x}{2}\right)\right) dx.$$

Question 7. (5 marks) Evaluate the indefinite integral:

$$\int x \operatorname{arcsec} x \, dx$$

Question 8. (5 marks) Evaluate the definite integral:

$$\int_{\pi/18}^{\pi/12} t \csc 3t \cot 3t \ dt$$

Question 9. (5 marks) Prove: If f(x) is a continuous and even function then

$$\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$

Bonus Question. (3 marks) If f(x) is a continuous function on a certain domain and satisfies

$$0 = \int_{98}^{x} f(t) dt - \arcsin(\ln x) - \int_{x}^{99} e^{t} f(t) dt$$

then find f(x) and state its domain.