Dawson	College:	Linear	Algebra:	201-NYC-	-05-S07:	Winter	2010

Name:	·
Student ID:	

Test 2

This test is graded out of 50 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) Use Cramer's rule to solve for x_2 without solving for x_1 , x_3 .

$$7x_1 + 2x_2 - 2x_3 = 3$$

 $4x_1 + x_2 = 0$
 $3x_1 + 3x_2 - x_3 = 1$

(Use cofactor expansions to find the determinants)

Question 2. (4 marks) Show that if A, B are invertible then $det(A^{-1}BCAB^{-1}) = det(C)$

Question 3. (5 marks)

a. (5 marks) Use the combinatorial definition of the determinant to compute:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

b. (2 marks) Justify the "visual way" of computing the determinant using part a.

Question 4.

a. (5 marks) Find the inverse of the following matrix using the adjoint:

$$A = \begin{bmatrix} 0 & -2 \\ 3 & 1 \end{bmatrix}$$

b. (2 marks) Using part a. solve the following equation:

$$Ax = b$$

where

$$b = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
.

Question 5. (3 marks) For which value(s) of α is the following matrix invertible:

$$\begin{bmatrix} \alpha^2 - 1 & 0 & 0 \\ 1 & \alpha & 0 \\ 2 & -1 & \alpha + 1 \end{bmatrix}$$

Question 6. Let

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 9 & 3 & 4 & 1 & 0 & 9 \\ 0 & 1 & 1 & 1 & 4 & 9 & 2 & 7 & 7 & 9 \\ 0 & 0 & 1 & 1 & 1 & 4 & 9 & 2 & 7 & 7 \\ 0 & 0 & 0 & 1 & 1 & 1 & 4 & 9 & 2 & 7 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 4 & 9 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 4 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, D = \begin{bmatrix} 2b - a & b \\ 2d - c & d \end{bmatrix}$$

- a. (3 marks) If B is a 10×10 invertible matrix show that AB is invertible.
- b. (4 marks) If det(D) = 2 then find det(C).

Question 7. (5 marks) Compute the determinant of the following matrix using elementary operations

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & -2 & 1 \\ 6 & 3 & 1 \end{bmatrix}.$$

Question 8. (5 marks) If A, B are 3×3 matrices, det(2A) = -8 and $det(B) = \sqrt{2}$ then find $det((3AB)^t(2AB)^{-1}A^4B^3A^{-1})$.

(show every step)

Question 9.

- a. (1 mark) Sketch the vector $\mathbf{v} = (3,2,4)$ on a right-handed coordinate system.
- b. (2 marks) Find a nonzero vector **u** with terminal point Q(3,2,1) which is oppositely directed to **v**.
- c. (2 marks) Let $\mathbf{a} = (-1,0,2)$, $\mathbf{b} = (0,3,0)$ and $\mathbf{c} = (1,1,0)$. If $\mathbf{w} = 2(\mathbf{a} \mathbf{b}) + 3\mathbf{c}$ then find a unit vector which has the same direction as \mathbf{w}

Bonus Question. (3 marks) Consider

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$$

and use row reduction to show that $\det(A) = (b-a)(c-a)(c-b)$.