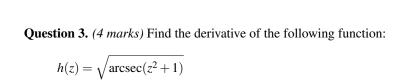
Dawson College: Calculus I: 201-NYA-05-S4: Winter 201	Dawson College	: Calculus I:	201-NYA-05-	S4: Winter 2013
--	----------------	---------------	-------------	-----------------

Name:	
Student ID:	

Test 2


This test is graded out of 48 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) Find the derivative of the following function and simplify:

$$f(x) = \frac{(3x^2 + 2)^5}{(5x+1)^6}$$

Question 2. (5 marks) Find the derivative of the following function:

$$g(t) = t^3 + \frac{1}{\sqrt{t}} + 2\sin t + 3\csc t + 4\arctan t$$

Question 4. (4 marks) Find the derivative of the following function:

$$f(x) = (3x^3 + x)^{3/2} \sqrt{2x - 1}$$

Question 5. The yearly demand for the Super Cool Fixed Gear bicycle is

$$p = 1000 - 0.04x \quad (0 \le x \le 20000)$$

where p denotes the wholesale unit price in dollars and x denotes the quantity demanded. The weekly total cost function associated with manufacturing the Super Cool Fixed Gear is given by

$$C(x) = 0.000003x^3 - 0.02x^2 + 300x + 70000$$

where C(x) denotes the total cost incured in producing x Super Cool Fixed Gear.

- a. (2 marks) Find the revenue function R and the profit function P.
- b. (3 marks) Find the marginal cost function C', the marginal revenue function R' and the marginal profit function P'.
- c. (2 marks) Compute P'(2000) and interpret your results.

Question 6. (6 marks) Find the third derivative of the following function. Simplify your final answer.

$$f(x) = \frac{x^2 + 1}{(2x+1)^2}$$

Question 7. Using the demand function:

$$p = 1000 - 0.04x$$

- a. (3 marks) Calculate the elasticity of demand function E(p).
- b. (2 marks) Calculate the elasticity of demand when the price is set at \$750. Interpret the result.
- c. (1 mark) At what price is the demand unitary?

Question 8. Given:

$$6 + \sqrt{2} - 2xy = \sqrt{y+1}$$

- a. (5 marks) Find $\frac{dy}{dx}$.
- b. (2 marks) Find the equation of the tangent to the graph of the given relation at (1,3)

Question 9. (5 marks) Find the equation of the tangent to the function $f(x) = \tan 2x$ at $x = \frac{\pi}{8}$.

Bonus Question. (5 marks) Find the derivative of the following function but do *not* simplify.

$$f(x) = \cot\left(\sqrt{\frac{\arcsin(\tan x + x^2) + x}{\operatorname{arccot}(\sec x + e) - x}} + \pi\right)$$