# More Probability Properties

Proposition: For any event A,  $P(A) = 1 - P(A^c)$ 

Proof:

Proposition: For any events A and B,  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

Proof:

Example: In a suburb in Quebec, 60% of households subscribe to an English newspaper, 80% of households subscribe to a French newspaper and 50% of households subscribe both.

If a household is selected at random, what is the probability that a household subscribes to

- 1) at least one paper.
- 2) exactly one paper.

### Product Rule (for ordered pairs)

Suppose we have events consisting of ordered pairs and we want to count the number of pairs.

By ordered pairs we mean two-tuples (a,b) where (a,b) is different from (b,a) if  $a \neq b$ .

If the first element in the pair can be selected in  $n_1$  ways and the second element in  $n_2$  ways then the number of ordered pairs is  $n_1 \cdot n_2$ .

Note, in order for the product rule to apply there must be the same number of choices for the second element no matter what the choice of first element is.

Example: A family moves to Montreal and needs the services of a dentist and family doctor. There are three family doctors and four dentists accepting new patients. How many possible choices of doctor and dentist can the family choose?

#### **General Product Rule**

Suppose we have ordered collections of k elements  $(e_1, e_2, ..., e_k)$  and

- there are  $n_1$  for  $e_1$ .
- For each choice of  $e_1$  there are  $n_2$  choices for  $e_2$ .
- For each choice of  $e_2$  there are  $n_3$  choices for  $e_3$ .

•

• For each choice of  $e_{k-1}$  there are  $n_k$  choices for  $e_k$ .

Then there are  $n_1 \cdot n_2 \cdot ... \cdot n_k$  k-tuples  $(e_1, e_2, ..., e_k)$ .

Example: Roll a die five times successively noting a sequence of five numbers representing each roll  $(R_1,R_2,R_3,R_4,R_5)$ . How many possible 5-tuples are there?

#### Permutations

Any ordered sequence of k objects taken from a set of n objects is called a **permutation of size k**.

The number of permutations of size k from n objects is denoted

$$P_{k,n}$$
 or  $_{n}P_{k}$ 

Example: How many ways are there to pick a class president and vice-president from a class of 30 students?

Notice that in our example

$$_{30}P_2 = 30.29 =$$

This is indeed the formula for  $_{n}P_{k}$ 

$$_{n}P_{k} = \frac{n!}{(n-k)!}$$

## **Combinations**

Given a set of n distinct objects, any unordered subset of size k that can be formed from the objects is called a **combination**.

The number of combinations of size k from n elements is denoted

$$\binom{n}{k}$$
 or  $C_{k,n}$  or  ${}_{n}C_{k}$ 

It makes sense that

$$_{n}P_{k} \geq _{n}C_{k}$$

Example: Consider the set of objects. {A, B, C, D, E}.

How many ways are there to order k objects?

$$_{n}C_{k} = \frac{_{n}P_{k}}{k!} = \frac{n!}{(n-k)!k!}$$

In our example:

Example: A bridge hand consists of 13 cards selected from a deck of 52.

Consider the events:

A = the event that a hand consists entirely of spades and clubs with both suits represented

B = the event that a hand consists of exactly two suits

Find P(A) and P(B).