Trigonometric Substitutions

In this section we will examine a technique for evaluating integrals containing expressions of the following type

$$\sqrt{a^2-x^2}$$
 , $\sqrt{a^2+x^2}$ or $\sqrt{x^2-a^2}$

Previously when making a substitution we would introduce a new variable by letting u=f(x), a function of x. However, for these types of integrals we will want to make a substitution where $x=g(\theta)$. This works because of the substitution rule

$$\int f(x)dx = \int f(g(\theta))g'(\theta)d\theta$$

This kind of substitution is called an inverse substitution. To make our calculations easier we assume that g has an inverse function (that is, g is one-to-one.)

The following is a list of trigonometric substitutions that are useful for the given expression because of the identity on the right. The restriction is to ensure that the function is one-to-one.

Expression Substitution Identity
$$\sqrt{a^2-x^2} \hspace{1cm} x=a\sin\theta, \hspace{1cm} -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \hspace{1cm} 1-\sin^2\theta = \cos^2\theta$$

$$\sqrt{a^2 + x^2}$$
 $x = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$ $1 + \tan^2 \theta = \sec^2 \theta$

$$\sqrt{x^2 - a^2}$$
 $x = \sec \theta, \ 0 \le \theta < \frac{\pi}{2} \text{ or } \pi \le \theta < \frac{3\pi}{2} \ \sec^2 \theta - 1 = \tan^2 \theta$

There are two main reasons for the restrictions on the substitutions. For example, let's say we have the expression $\sqrt{a^2-x^2}$. According to the chart we want to make the substitution $x=a\sin\theta$. Notice that x can take any value between a and -a. We want $a\sin\theta$ to 1) also take those same values and 2) be one-to-one. Since $\sin\theta$ is one-to-one on $-\pi/2 \le \theta \le \pi/2$ but takes on all values between -1 and 1, $a\sin\theta$ takes on all values between -a and a on that interval as required. There are similar arguments for the other two substitutions.

Let's try some examples:

Evaluate the following integrals.

1)
$$\int \frac{dx}{x^2\sqrt{9-x^2}}$$

•

$$2) \int \frac{dx}{\sqrt{x^2 + 4}}$$

3)
$$\int \frac{dx}{(x^2+1)^{3/2}}$$

4)
$$\int_{\sqrt{3}}^{2} \frac{\sqrt{x^2 - 3}}{x} dx$$

$$5) \int \frac{1}{x\sqrt{4x^2+3}} dx$$

$$6) \int \frac{x}{\sqrt{x^2 - 9}} dx$$

Completing the square

$$x^2 + bx + c$$

7)
$$\int (x+1)\sqrt{x^2+2x+2}dx$$

8)
$$\int \frac{\sqrt{1-x^2}}{x^4} dx$$