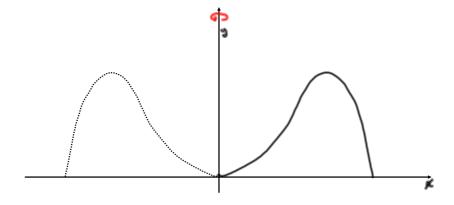
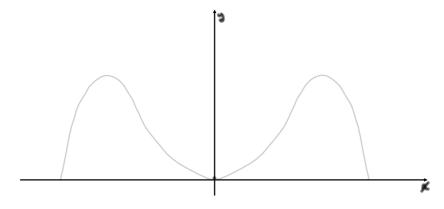

7.3 Volumes by Cylindrical Shells

Suppose we wanted to find the volume of the solid formed by rotating the region bounded by $y=2x^2-x^3$ and y=0 about the y-axis.



Let's develop another method. Again, we start with an approximation but this time we will approximate using cylindrical shells.

Let's calculate the volume of a cylindrical shell.


Let's use this to approximate the following volume

Partition [a,b] into n subintervals with partition points $x_0, x_1, x_2, \ldots, x_n$

The volume of a shell can be written as

And so our approximation looks like

And can be written as

Again, our approximation gets better as $\max \Delta x \to 0$

It turns out that

Examples: 1) Find the volume of the solid obtained by rotating the region bounded by $y=2x^2-x^3\,$ and $y=0\,$ about the y-axis.

2) Find the volume of the solid generated by rotating the region bounded by $y=\sqrt{x}, x=1, x=4$ and the x-axis is revolved about the y-axis.

3) Find the volume of the solid generated by rotating the region in the first quadrant enclosed between $y=x$ and $y=x^2$.

4) Find the volume of the solid generated when the region R under $y=x^2$ over the interval [0,2] is revolved about the x-axis.

5) Find the volume of the solid obtained by rotating the region bounded by $y=x-x^2$ and y=0 about the line x=2.