	e: Calculus II (SCIENCE): 201-NYB-05-S09: Winter 2013	Dawson College:
 Name:		
 Student ID:		

Test 3

This test is graded out of 45 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=1995}^{\infty} \frac{(-1)^n}{n(\ln n)^2}$$

Question 2. (5 marks) Determine whether the series is convergent or divergent. If it is convergent find its sum.

$$\sum_{n=2}^{\infty} \left[\ln(2n^2 + 1) - 2\ln(n) \right]$$

Question 3. (5 marks) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=3}^{\infty} \left[\left(\cos \left(2\pi - \frac{1}{n} \right) \right)^{n^2} \right]^n$$

Question 4. (5 marks) Set up the integral to find the volume of the solid obtained from the region bounded by the graphs of $x = -y^2 - y^3$, x = 0 rotated about the line y = 1. Sketch the region, draw a representative rectangle, label all parts of the graph and give the integral.

Question 5. (5 marks)

a. (1 mark) Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

$$\left\{\cos 1, \frac{\cos 2}{2}, \frac{\cos 3}{3}, \frac{\cos 4}{4}, \frac{\cos 5}{5}, \ldots\right\}$$

- b. (1 mark) Is a_n is monotonic?
- c. (1 mark) Show that a_n is bounded.
- d. (2 marks) Determine the limit of a_n as $n \to \infty$.

Question 6. (5 marks) Determine whether the series is convergent or divergent. If it is convergent find its sum.

$$\sum_{n=2}^{\infty} \frac{2^n - 3^{n-1}}{4^{n+1}}$$

Question 7. (5 marks) Determine whether the series is convergent or divergent.

$$\sum_{n=2}^{\infty} \frac{\pi n - \arctan n}{\sqrt{n^5 + n^2 + 1}}$$

Question 8. (5 marks) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=3}^{\infty} (-1)^n \sqrt{\frac{n^4 + n}{n^5 - n - 3}}$$

Question 9. (5 marks) Determine whether the series is convergent or divergent. If it is convergent find its sum.

$$\sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{3^n (n!)^2}$$

Bonus Question. (3 marks)

a. (1 mark) State the $K(\varepsilon)$ definition of the limit of a sequence.

b. (3 marks) Show that if $\lim_{n\to\infty} a_{2n} = L$ and $\lim_{n\to\infty} a_{2n+1} = L$, then $\{a_n\}$ is convergent and $\lim_{n\to\infty} a_n = L$

c. (2 marks) If $a_1 = 1$ and

$$a_{n+1} = 1 + \frac{1}{1 + a_n}$$

converges the find the limit of the sequence.