Name: Y. Lamontagne
Student ID:

Quiz 6

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. §24.4 #31 (5 marks) One statement of Boyle's law is that the pressure of a gas varies inversely as the volume for constant temperature. If a certain gas occupies 650 cm³ when the pressure is 230 kPa and the volume is increasing at the rate of 20.0 cm³/min, how fast is the pressure changing when the volume is 810 cm³?

OP-pressure
$$P_1 = 230 \text{ kPa}_1$$
 V -volume $V_1 = 650 \text{ cm}_2^3$
 $V_2 = 810 \text{ cm}_2^3$
 $\frac{dP_2}{dt} = \frac{7}{4}$
 $P = \frac{K}{V}$
 $P = \frac{K}{V}$
 $P = \frac{K}{V}$

$$\frac{dP}{dt} = \frac{-K}{V^{2}} \cdot \frac{dV}{dt}$$
where $K = P_{1}V_{1}$

$$= (230)(650)$$
So $\frac{dP}{dt} = -\frac{(230)(650)}{(810)^{2}} \cdot 20.0$

$$= 4.6 KPa/min$$

Question 2. §24.5 #31 (5 marks) Sketch the graphs of the given functions by determining the appropriate information and points from the first and second derivatives.

$$y = x^{5} - 5x$$

$$\frac{x - int!}{0 = y}$$

$$0 = x^{5} - 5x$$

$$0 = x(x^{4} - 5)$$

$$x = 0$$

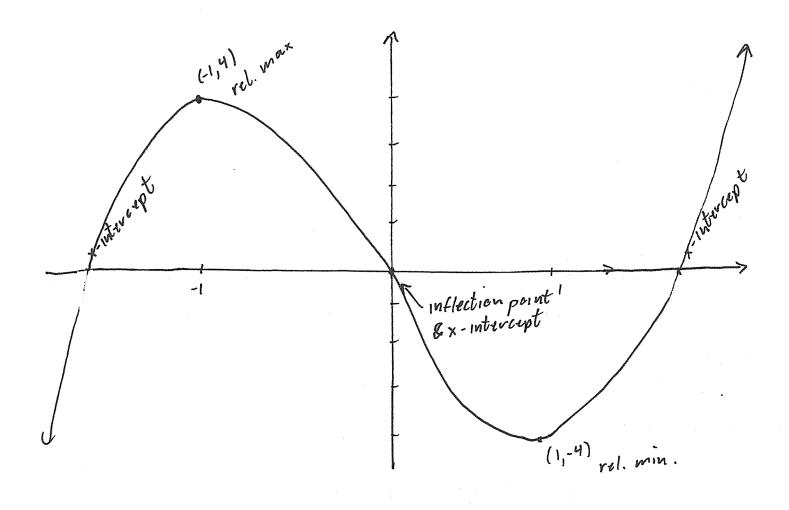
$$x = \frac{1}{2} \sqrt{5} = \frac{1}{2} \sqrt{5}$$

first derivative:

$$y'=5x^{4}-5$$
critical points: $0=y'$

$$0=5x^{4}-5$$

$$0=x^{4}-1$$


$$0=(x^{2}-1)(x^{2}+1)$$

$$0=(x-1)(x+1)(x^{2}+1)$$

Intervals	(-00,-1)	(-1, 1)	(1,00)	
test point, p	-2	0	2	
y'(p)	75	-5	75	
+/-	+		+	
incldec	7	> 3	71	
o rel. max $G \times = -1$ $y = (-1)^{5} - 6(-1)$ $= 4$ o rel min $G \times = 1$ $y = 1^{5} - 5(1)$ $= -4$				
Second deri y" = 2 values of x	vative:	y"=0:	g = 20 X 3	

intervals	(-00,0)	(0,0)
test point, p	- 1	1
4"(-1)	-20	20
+/-		7
concavity		V

e o inflection point at x=0 y=0

