Dawson College:	Calculus I	(Снем.	TECH.):	201-N	YA-05	-S04:	Winter	2015

Name:	
Student ID:	

Test 3

This test is graded out of 38 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. Compute the indefinite integral(1 mark each):

a.

$$\int \sec x \, dx$$

b.

$$\int \csc x \, dx$$

c.

$$\int \tan x \, dx$$

d.

$$\int \cot x \, dx$$

e.

$$\int e^x dx$$

f.

$$\int \frac{1}{x} \, dx$$

g.

$$\int \cos x \, dx$$

Question 2. Compute the indefinite integral.

a. (2 marks)

$$\int \frac{x+2}{x^2} \, dx$$

b. (3 marks)

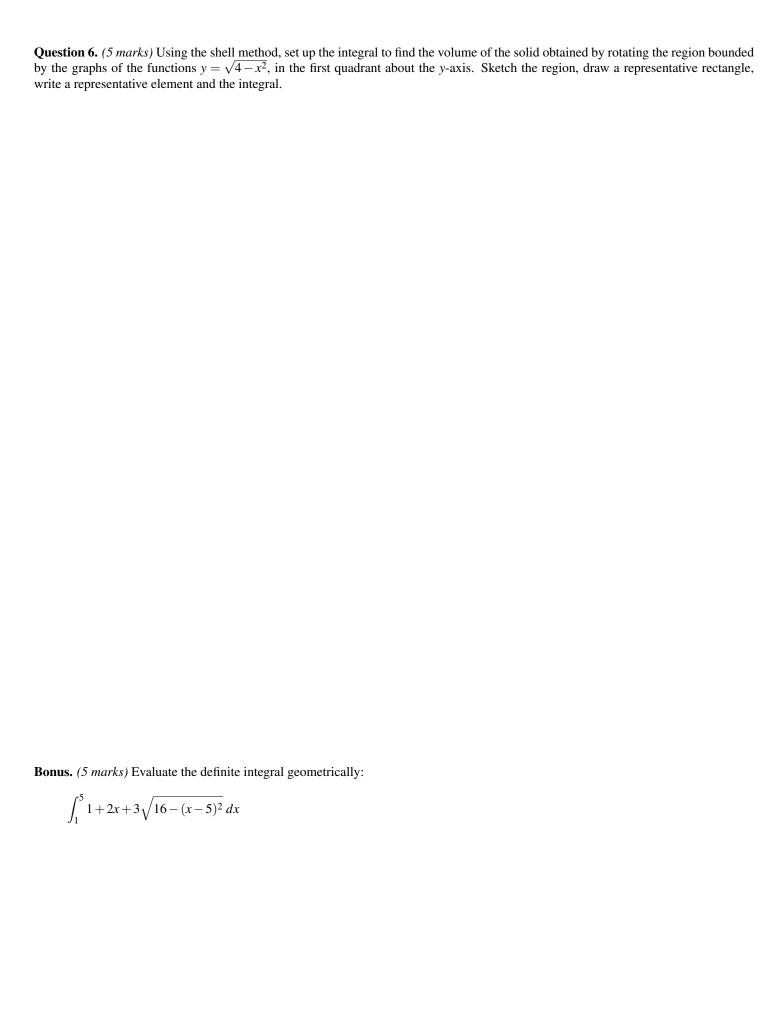
$$\int \frac{1 - \sin x}{1 + \cos x} \, dx$$

c. (3 marks)

$$\int \frac{e^{\arcsin 2x}}{\sqrt{1 - 4x^2}} \, dx$$

Question 3. Compute the definite integral:

a. (4 marks)


$$\int_0^{\pi/12} \frac{\sec^2 3x}{4 + \tan 3x} \, dx$$

b. (4 marks)

$$\int_0^{1/2} \frac{\ln(2x+3)}{2x+3} \ dx$$

Question 4. (5 marks) Sketch and find the area of the region bounded by the graphs of $y = 4 - x^2$, $y = 4x - x^2$, x = 0 and x = 2.

Question 5. (5 marks) Using the disk method, set up the integral to find the volume of the solid obtained by rotating the region bounded by the graphs of the functions $y = x^2 + 1$, x = 0, x = 3, y = 0, about the x-axis. Sketch the region, draw a representative rectangle, write a representative element and the integral.

