Dawson	College:	Calculus II	(SCIENCE)	· 201-NYB	-05-S10·	Winter 2016
Dawson	Concec.	Carcaras II	OCILITOL	, 201 IND	05 510.	**************************************

Name:		

Quiz 5

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) §5.5 #68 If f is continuous on \mathbb{R} , prove that

$$\int_a^b f(x+c) dx = \int_{a+c}^{b+c} f(x) dx$$

For the case where $f(x) \ge 0$, draw a diagram to interpret this equation geometrically as an equality of areas.

Question 2. (5 marks) §6.1 #32a Prove the reduction formula

$$\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \, \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

Question 3. (5 marks) If $\int_{-9}^{4} -3f(x) + 2x + 1 dx = 6\pi - \frac{83}{2}$ and $\int_{-9}^{3} f(x) dx = -2\pi - 4$ then determine $\int_{3}^{4} f(x) dx$.