Dawson	College:	Linear	Algebra	(SCIENCE):	201-NYC-05-S5:	Winter 2017
Dawson	College:	Linear	Algebra	(SCIENCE):	201-NYC-05-S5:	Winter 201/

Name:			
Name:			

Quiz 7

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. §2.2 #24 (3 marks) Solve by Cramer's rule, where it applies.

$$7x_1 - 2x_2 = 3$$

$$3x_1 + x_2 = 5$$

Question 2. #3.4.10 (3 marks) Consider two 4×4 matrices A and B, with det(A) = -2 and det(B) = 3. Find the determinant of M, knowing that $det(2B^TMA^{-1}B) = det(adj(A)A^2B)$.

Question 3. §3.1 #TF (2 marks) Determine whether the statement is true or false, and justify your answer. The vectors (a,b) and (a,b,0) are equivalent.

Question 4. §3.1 #TF (2 marks) Determine whether the statement is true or false, and justify your answer. The linear combinations $a_1\vec{v}_1 + a_2\vec{v}_2$ and $b_1\vec{v}_1 + b_2\vec{v}_2$ can only be equal if $a_1 = b_1$ and $a_2 = b_2$.