Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S5: Winter 2017	
	Name:
Quiz 9	

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is

worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. §3.4 #23

- a. (3 marks) Find a homogeneous linear system of two equations in three unknowns whose solution space consists of those vectors in \mathbb{R}^3 that are othogonal to $\vec{a} = (1, 1, 1)$ and $\vec{b} = (-2, 3, 0)$.
- b. (2 marks) What kind of geometric object is the solution space?

Question 2. §3.5 #35 (5 marks) Show that if \vec{u} , \vec{v} and \vec{w} are vectors in \mathbb{R}^3 , no two of which are collinear, then $\vec{u} \times (\vec{v} \times \vec{w})$ lies in the plane determined by \vec{v} and \vec{w} .

Question 3. (2.5 marks) Prove: If $AX = 0$ for some $X \neq 0$, then $det(A) = 0$.	
Question 4. (2.5 marks) Prove or disprove: There does not exist an $n \times n$ matrix A where n is odd such that $A^2 + I = 0$.	