Dawson College: Winter 2019: Linear Algebra (SCIENCE): 201-NYC-05-S6: Quiz 11 name:
Question 1. ¹ (1 mark each) Complete the following sentences with the word must, might or, cannot, as appropriate. a. If \vec{u} and \vec{v} are nonzero vectors in \mathbb{R}^3 , then $(\vec{u} \times \vec{v}) \cdot \vec{u}$ be equal to 0. Question 2. ¹ (5 marks) Let \vec{u} and \vec{v} be non-zero vectors in \mathbb{R}^3 . Show that if $\frac{1}{\vec{u} \cdot \vec{v}} (\vec{u} \times \vec{v})$ is a unit vector then the angle between \vec{u} and \vec{v} is 45° or 135°.
Question 3. ² Given the line $\mathcal{L}: (x, y, z) = (2, 2, 3) + t(1, -1, -3)$ where $t \in \mathbb{R}$, the plane $\mathcal{P}: 3x - 2y + 2z = 7$ and the point $A(1, 1, 1)$. a. (5 marks) Find parametric equations of the line which contains A , intersects \mathcal{L} and which is parallel to \mathcal{P} .

b. (5 marks) Find parametric equations of the line which contains A and which intersects \mathcal{L} at a right angle.

 $^1{\rm From}$ John Abbott Final Examinations. $^2{\rm From}$ a Dawson College Final Examination.