Dawson College: Winter 20	019: Linear Algebra (SCIENCE):	201-NYC-05-S6: Quiz 15	name:

No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

Definitions. Let A be an $m \times n$ matrix.

The set of all $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{0}$ is called the *null space* of A, that is, $\operatorname{Nul}(A) = \{\mathbf{x} \mid A\mathbf{x} = \mathbf{0}\}.$

The set of all $\mathbf{x} \in \mathbb{R}^m$ such that \mathbf{x} is in the span of the vectors that are the columns of A is called the *column space* of A, that is, if $\mathbf{a}_1, \ \mathbf{a}_2, \ \ldots, \mathbf{a}_n$ are the columns of A then $\operatorname{Col}(A) = \operatorname{span}(\{\mathbf{a}_1, \ \mathbf{a}_2, \ \ldots, \mathbf{a}_n\}).$

Question 1.1 (1 mark each) Complete the following sentences with the word must, might or, cannot, as appropriate.

- a. The columns of an $n \times n$ elementary matrix _____ be a basis for \mathbb{R}^n .
- b. If A is an $m \times n$ matrix and $\dim(\text{Nul}(A)) = n$, then A _____ be a $m \times n$ zero matrix

Question 2. (1 mark each) Fill in the blank.

- a. The vector space of all diagonal $n \times n$ matrices has dimension _____.
- b. The vector space of all skew-symmetric (i.e. $A^T = -A$) $n \times n$ matrices has dimension _____.

Question 3. Consider the following matrix A and its reduced row echelon form B given below. Justify completely!

$$A = \begin{bmatrix} 2 & 1 & -1 & 1 & 0 & 3 \\ 3 & 4 & -14 & 1 & 0 & 14 \\ 1 & -1 & 7 & 2 & 0 & -9 \\ -3 & -2 & 4 & 3 & 0 & -24 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 & 2 \\ 0 & 1 & -5 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 & 2 \\ 0 & 1 & -5 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

a. (4 marks) Find a basis for Col(A).

b. (4 marks) Find a basis for Nul(A).

c. (1 mark) Express the third column of matrix A relative to the basis found in part a.

d. (1 mark) Determine the dimension of Col(A) and Nul(A).

¹From or modified from John Abbott College Final Examination.