Dawson College: Winter 2022: Linear Algebra (SCIENCE): 201-NYC-05-S8: Test 2, part 1 of 2name:
Question 1. ¹ (1 mark per blank) Complete each of the following sentences with MUST, MIGHT, or CANNOT.
a. If A is a product of elementary matrices, then $det(A)$ equal zero
b. Let A be a 3×3 matrix, and let B be a 4×4 matrix. If the leading ones of the RREF of A is equal to those of the RREF of B, then $det(B)$ equal zero and $det(A)$ equal zero.
c. Two lines in \mathbb{R}^3 that are both perpendicular to a third line be parallel.
d. If \vec{u} and \vec{v} are nonzero vectors in \mathbb{R}^3 , then $(\vec{u} \times \vec{v}) \cdot \vec{u}$ be equal to 0.
e. Let \vec{u} be parallel to \vec{x} , and let \vec{v} be parallel to \vec{y} . Then $\vec{u} + \vec{v}$ be parallel to $\vec{x} + \vec{y}$.
f. The vector $\vec{u} \times (\vec{v} \times \vec{w})$ be a solution of $\vec{v} \cdot \vec{x} = 0$ and $\vec{w} \cdot \vec{x} = 0$.
Question 2. (1 mark per blank) Given A an $n \times n$ matrix and k a non-zero scalar.
a. If A is an elementary matrix obtained by interchanging two rows then $det(A) = \underline{\hspace{1cm}}$.
b. If A is a matrix which is obtained by multiplying each row of the identity by the number of the row then $\det(A) =$

c. If A is an elementary matrix obtained by multiplying one row by k then $det(A) = \underline{\hspace{1cm}}$.

Question 3. 2 (5 marks) If A and B are invertible matrices of the same size show that

$$\mathrm{adj}\left(AB\right) = \mathrm{adj}\left(B\right)\mathrm{adj}\left(A\right)$$

Question 4. (5 marks) Find the determinant of the matrix A.

$$A = \begin{bmatrix} 2 + 2 \operatorname{trace}(A) & \det(A) & 1 \\ -2 & 3 & 1 \\ 2 & 5 & 0 \end{bmatrix}$$

 $^{^{\}rm 1}$ From or modified from a John Abbott final examination

 $^{^2}$ From a Dawson College final examination

Question 5.1 (5 marks) Given that $\det \begin{pmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \end{pmatrix} = 10$ and $A = \begin{bmatrix} 3g + a & 3h + b & 2 & 3i + c \\ d + 2a & e + 2b & 3 & f + 2c \\ a & b & 4 & c \\ 0 & 0 & 5 & 0 \end{bmatrix}$

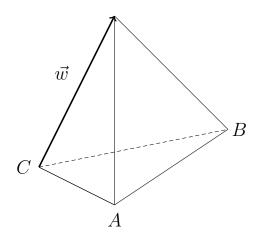
- a. (5 marks) Find det(A).
- b. (3 marks) Using Cramer's Rule find x_1 and x_3 for $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 2a & 3a & 4a & 5a \end{bmatrix}^T$

Question 6.¹ (3 mark) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If A is a skew-symmetrix $n \times n$ matrix where n is odd then det(A) = 0.

Question 7.¹ (3 marks) Show that if $\operatorname{proj}_{\vec{v}} \vec{u} = \operatorname{proj}_{\vec{v}} \vec{w}$, then $\vec{u} - \vec{w}$ is orthogonal to \vec{v} .

Question 8. (2 marks) Sketch $\vec{v} = (2, 3, 5)$ as shown in class, include and label the axes.



Question 9. (5 marks) Given the terahedron determined by the points A(2,-1,-1), B(2,-1,-2), $C(0,8\sqrt{5}-1,0)$ and the vector $\vec{w}=(4,1,3)$. Note that from the diagram, \vec{w} is not perpendicular to the base.

Find the volume of the tetrahedron. (Hint: the volume of a tetrahedron is equal to one third of the area of the base times the height.)

Question 10. Given the plane x + y + z = 0 and the line (x, y, z) = (1 + t, 2 + 2t, 3 + 3t) where $t \in \mathbb{R}$.

a. (2 marks) Determine whether the line is perpendicular to the plane, parallel or neither. Justify

b. (2 marks) Find the point of intersection between the line and the plane if it exists.

Question 11. Given $\mathcal{L}_1 : \vec{x} = (1,0,1) + t(-4,-2,6)$, where $t \in \mathbb{R}$.
a. (4 marks) Find an equation for the line through the origin that intersects \mathcal{L}_1 at a right angle.
b. (2 marks) Find the distance between the origin and \mathcal{L}_1 .
c. (2 marks) Find the closest point on \mathcal{L}_1 to the origin.
c. (2 marks) Find the plane that contains \mathcal{L}_1 and the origin.
Question 12. ³
a. (1 marks) Find a homogeneous linear system of two equations in three unknowns whose solution space consists of those vectors
in \mathbb{R}^3 that are orthogonal to $\vec{a}=(-3,2,-1)$ and $\vec{b}=(0,-2,-2)$.
b. (2 marks) What kind of geometric object is the solution space? Justify.
b. (2 market) what kind of geometric object is the solution space. Vasting.
c. (2 marks) Find a vector which is parallel to the solution space without solving the system. Using that vector find the solution space.
space.
Bonus Question. (5 marks) If $\vec{u}, \vec{v} \in \mathbb{R}^n$ then $ \vec{u} \cdot \vec{v} \le \vec{u} \vec{v} $. Hint: Analyse the squared norm of $ \vec{u} \vec{v} - \vec{v} \vec{u}$ and $ \vec{u} \vec{v} + \vec{v} \vec{u} $

 $^3{\rm From}$ the assigned homework.